R. Knight, G. Rabideau, A. Mishkin, and Y. Lee. “"Automating Stowage Operations for the International Space
Station.” Proceedings of the 8" International Workshop on Planning and Scheduling for Space (IWPSS-2013),

25 March, 2013. San Jose, California.

Automating Stowage Operations for the I nter national Space Station

Russell Knight, Gregg Rabideau, Andrew Mishkin, Young Lee

Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Dr.
Pasadena, CA 91109
Russell.Knight@jpl.nasa.gov
Gregg.Rabideau@jpl.nasa.gov

Andrew.Mishkin@jpl.nasa.gov
Young.H.Lee@jpl.nasa.gov

Abstract

Stowage operations (the act of storing and retggviems)
onboard the International Space Station takes
approximately 25% of each astronaut's time. Uriilently,
managing stowage was fundamentally performed byd han
by extremely skilled technicians called stowageiceff.
These individuals need to be able to know, by sympl
examining a list of items and a location, how muabm is
left at a location and if some new item could bacpt
there. We have provided a fielded capability thaesua
novel box-packing algorithm combined with a data&bas
search capability to aid stowage officers in tlueities.

up

Introduction

This paper is organized as such:
brief ISS stowage description
fast item lookup

box packing

results

related work

aorwbE

| SS Stowage Description

Managing stowage is fundamentally managing the
inventory flying onboard the International Spaceatisn. A
database detailing the contents of each locatioisésl and
updated when the contents change location, are uged
are lost, or occasionally when they are discovefasdpart

of the Automating and Streamlining ISS Mission
Operations (ASIMO) collaboration between the Jet
Propulsion Laboratory and Johnson Space Centeteauar
examined improving the stowage processes. Throhgh t
use of Certification Based Analysis [Knight 2010e
determined a set of processes that could be imgriwee
could reduce the number of times the products daile

Copyright © 2013 California Institute of Technologll rights reserved.

This work was carried out by the Jet Propulsiondratory, California
Institute of Technology, under a contract with tiational Aeronautics
and Space Administration.

certification (i.e., required further work or failéo be what

the user intended). Three of these processes vi@nidfit
from a capability to automatically find locations which

to store items. This paper focuses on the techgolog
delivered for these processes.

The three processes we focus on are 1) location

suggestion for found material, 2) Prepack list gatien,

and 3) Unpack list generation.

L ocation Suggestion for Found M aterial

Location suggestion for found material is a twagste
process. This scenario is that an item has beattifide
onboard station and a location needs to be fourd th
accommodates storing the item. The ground personnel
must work with the astronaut to 1) identify theniteand
then 2) determine an appropriate location.

The identification of the item using the database
management system is usually straight-forward, \wet
saw the opportunity to improve on this by providiag
interface that allowed any sort of information ® dntered
and all fields would be searched automatically eerg
keystroke. For example, if an astronaut finds aeahjwe
could use a description fragment, e.g., “ctb divide get
a list of candidate parts that the found item cdugd We
could then add details, such as a part-number feagm
e.g., “ctb divider seg3311” which would result imetlist
being narrowed down. Of course, we could use the
barcode, but this is not always on the item. Dgtail our
approach can be found in the Fast Item Lookup cecif
this paper.

Once the item is identified, we have an exemptar t
search for locations. We could simply place theita the
location that it is supposed to be in, or we migeéed to
find a new home for it. Once we have identifying
information, such as part number and who ownssityall
as dimensional information. Since stowage offiqamsfer
storing similar items together, this is very import

information. We then make use of our Box Packing
technology to suggest several locations to plagetém.

Prepack List Generation

Prepack list generation is the process of makinigteof
items to be shipped out of the ISS. This list idelsi bags

to be used and what items are to go into which .babs

can be quite lengthy, and needs to be updated es th
situation changes. To achieve automation of theamle

list generation, we use our automated box packing
algorithm to pack the bags with the items that tardoe
shipped out. But, we also want to accommodate manua
selection of items and addition of items to theé [ighis is
aided by our fast item lookup algorithm.

Unpack List Generation

Unpack list generation is the process of makingatipd a
list of items that are to be shipped to the ISShvitie
appropriate locations onboard. This list not omgluded
items, but also information, such as crew prefezenc
information. Crew preference items are those thaulkl
be stowed in the appropriate crew preference loosfi
clearly we want the right underwear to go to eadwc
member. As with prepack list generation, we autemat
unpack list generation by using our box-packingetgm

to find locations onboard station for all itemsrzestowed.
Of course, manual selection of destinations ischiale our
fast item lookup capability.

Fast Item L ookup

Our approach to fast item lookup was to pre-compile
search substrings into a lookup table, and theoparfoins
across the results using set intersection in menibnys
greatly outperforms database query (which draggical
slowed typing of queries). Typing of any entry féeswf
instantaneous real-time list updates. Note that thia
modest database of approximately one hundred thdusa
entries and we search across ten fields.

As a search entry is entered, a set of keys isrgéd by
breaking up the entry at white space borders. Kaghis
then considered to be a filter, and a set of datdes is
generated that has at least one field that statisthe key.
Since this is incremental, the worst case is theegdion
of the list for the very first key. As the key istended, the
list is pared down. When a new key is introducedew
list is generated by first copying the set of exgrirom the
previous key. This allows users to backspace owméies
without having to recompile the lists, although ksacing
through a partial entry does require repopulattbns we
only perform this when a user has let an updatedigily
deleted) key idle for more than 1/2 of a secondtaBse of
how we cascade key filter lists, the resultant dicitems

that represents the intersection of all lists @y the
filter list of the last key.

Box Packing

We find it surprising that, even though it seemobawnious
problem to address, very little work is availabte the
literature regarding packing a set of 3-dimensiaterins
into a single 3-dimensional container where thesatiigions

of the container are fixed. Most problem charaztgions,
such as rectangle packing problems, focus on segetiie
container of smallest dimension that accommodates t
entire list of items. Other approaches fail for Bma
numbers of boxes (20) or provide loose guarantaes o
quality [Miyazawa and Wakabayashi].

We often have many items in a container (overtBa)
we need to search for and find a set of solutioitkinva
very short period of time (preferably less thans&@onds).
Also, the raw branching-factor for 3-dimensionalxbo
packing is very high. Each box can be in one of 6
orientations, and every placed box removes oneidated
location, but introduces 3 more, on average. Téssilts in
a branching factor of at least 12, but can be wirseore
positions are induced due to adjacencies of other
previously placed boxes. All of these factors laedto
believe that optimal techniques might not lead aughie
best solutions for our problem.

To reiterate, we have a single 3-dimensional reptkar
solid (a box) that we wish to find a home for. Wk
through all of the candidate locations onboardatatalso
characterized as 3-dimensional rectangular solids).
determine whether or not a box can fit in a corginve
add the box to the list of contents for that camgaj and
then try to pack the entire list into the box.

Our solver works as such:

1. Order the items in descending order of the sum of
the squares of the length, width, and height.
Assign priorities as such.

2. For the first 5 boxes, search exhaustively for a
solution. If a solution is found, carry on to the
next step, but allow for backtracking if any of the
subsequent steps fail

3. In priority order, attempt to fit each item in the

first location that it will fit in the container. e

orientation chosen should be in order of the

orientation that fits the most items of that sime i

the container.

If any items fail to be placed in the container,

increase their priority by, where n is the number

of items.

5. If we have attempted to reorder the items and
failed to completely pack the container 100 times,

fail to line 2.

Ordering the items in descending order of the stithe
squares of the length, width, and height was fotmdée
greatly superior to simply ordering by volume orgkst
dimension or sum of dimensions. We hypothesize tthiat
is due to faithfully identifying hard things padike long
poles. This also scales with the interior diagondiich we
think faithfully represents the amount of inflexityi that is
introduced by placing the item in the box.

The short exhaustive search turned out to be lvelpful
in that there often were a few large items in |moe that
needed to be carefully placed, and many smallersitthat
could fit just about anywhere. The value of 5 migaem
somewhat magical, but consider that there are ower
hundred thousand positions to consider with 5 bdressg
searched exhaustively (approximately 124,416), dugr
one million positions to be considered 6 boxes
(approximately 1,492,992). Empirically, the reduced
performance for one more box wasn't justified.

The iterative priority-based optimization allowed to
quickly identify problem boxes and promote their
placement earlier in the packing sequence. Agdis, it
due to having some problematic items accompanyiagym
smaller trivial items. Also, keeping the priorityformation
between runs where we changed the orientation and
placement of some of the first five items allowesl to
continue progressing through the space of itemrorge

Finally, choosing orientations first that optimigacking
as if that were the only item and we were tryindiliathe
container with the item was helpful in that we oftead a
great deal of smaller items that were to be padkéal a
location. This heuristic ensures that a good déahese
could be packed in the case that we were simplkipgc
200 filters someplace.

A short note about bags: when packing a cargctean
bag, the bag is rather amorphous until it startérgefull,
then it starts resembling a rectangular solid, tivesuse
the rectangular solid dimensions to characterimgeldags.
Small bags, such as Ziploc bags, often remain anoag
To correctly characterize packing these, the iteans
removed from the bags and placed in the list intliglly
to be packed. We rely on the astronauts to figutehow
to squeeze the contents around in practice.

Results

Our results are purely in the form of the delivesgydtem
and our empirical observations on its performanidas
system provides the required functionality for Libma
Suggestion, Prepack list generation, and Unpack lis
generation.

Figure 1 shows the entry window and partial search
results for our fast lookup function for locatiamggestion.
To select any of these, we press the select buttsnlting

in the view in Figure 2. Here we select to findoadtion
for up to 10 items of the same type (in this caseargo
transfer bag divider). We kick of the search byestghg
the Get next locations button. We are then presented with a
list of candidate locations, with the number ofmte
accommodated by the location in parenthesis (Figréf

we select one of these, we can view the varioukipgs,

as shown in Figure 4 (left view), Figure 5 (rigltw), and
Figure 6 (top view). In each of these views, thégldr
yellow items are the dividers that we are tryingkace.

EA ASIMO: 3D Stowage Utility V1.0.6 (Console)
Update from DB |

New Item |

Search Iseg 3311div

Part Mumber | Serial Number | Acronym |

Select SEG33111841-317 2750 CTB Half Divider

Select SEG33111841-317 2778 CTE Half Divider

Select SEG33111841-317 CTE Half Divider

Select SEG33111841-317 CTE Half Divider

Select SEG33111841-317 CTB Half Divider

Select S5EG33111841-317 | NA_FLT10A_00030 CTB Half Divider

Select SEG33111841-317 2838 CTE Half Divider

Select SEG33111841-317 | NA_FLT31P_00086 CTE Half Divider

Figurel Location Suggestion: Item Lookup

I8 ASIMO: 3D Stowage Utility V1.0.6 (Console)
Update from DB

Quantity
[0l

Search Iseg 3311 div
Part Number I Serial Number |

[27s0
10

Acronym |

ICTB Half Divider I

ISEG33111841-317

Clear | Get next locations

Figure2 Location Suggestion: setting quantity

A ASIMO: 3D Stowage Utility V1.0.6 (Console)
Update from DB Search |seg 3311 div

Quantity Part Number | Serial Number |

[0 |sesasitsa1317 [a7s0 |E

i Eefnextlocations{|[10

Clear

€OL1D3 (SEG33111840-303 1106) (10) 26.0

NOD1P1 (SEG32111837-301 1015) (10) 15.833

PMA1 (SEG33111836-303 1171) (1) 15.833

NOD104 D1 (SEG33111838-307 1341) (1) 16.833

COLID2_A (SEG33111833-307 1466) (8) 13.229

COL1D5 (SODI-01-1524-1000-000-VE NA_FLT17A_00301) (8) 11.979

COL1D1(SEG33111836-303 1410) (4) 11.979

COL1D3_A (SEG33111840-303 1165) (10) 11.562

COL1D4_rack front (SEG33111838-307 1472) (5) 11.562

COL1D2_rack front (67215MEAB23200 2001) (10) 11.312

Figure 3 Location Suggestion: search results

pack these items automatically in a matter of sésanto
the bags, as shown by the Figure 8.

A Prepack List Viewer —[ol x|
GO Item # jame (bag ... | Part Numbe... | Serial Number | Bar Code N... Qty Original Lac... Options. Notes Autopack

TSR = T — -
SCIB SEG33L. [Ootors
TSI =R @
.5 CTB. SEG331118... 3
Scip_[seowmiin..

unassigned

0 GG, [110259971 7

02 [[OWER AR... [010520212.. 1

03 [COWER AR... [010320212.. 1

g [EMU GLOVE. .. [0106-11010... 3

g OGO - [(E 10 g

Figure7 Prepack List: before packing

Prepack List Viewer

GO Item # Mame (bag ... | Part Numbe... | Serial Number | Bar Code N... Qty Original Loc.... Optic

1 .. SEG33: Options

Figure4 Location Suggestion: L eft view of one = N BT e

candidate location E e

Options

Options

Options

Options

1.4 ASSEMBLY, ... Options

15 GRAB SAMP... |SEG481215... Options

Options

Options

Options

Options

Options

1.6 HRM TRANS... |SEG521010... Options

2 0.5CT8 seessius.. |] | [options

2.1 VALVE ASSE... |SDD461087... Options

Options

Options

Options

Options

2.2 ASSEMBLY, ... |SED461158... Options

(Options

Options

2.3 POTABLE W... |SEM461107... Options

Options

(Options

Options

Options

2.4 POTABLE W... |SEM461107... Options

Options

0.5CT8 seessius.. |] | [options

3.1 ASSEMELY, ... |SED451158... 2 Options
Figure5 Location Suggestion: Right view of one Figure8 Prepack List: after packing

candidate location

Similarly, our unpack implementation allows for @gging

a Microsoft Excel file and assigning locations e ftems

that are in the list. Figure 9 shows such a listmk in red
indicate that the field for the item in the listedonot match
any entry in the database. Nonetheless, we cah stil
automatically pack these into locations onboardI8t in

a matter of seconds, as shown by the assigned Final
Locations in Figure 10.

Figure6 Location Suggestion: top view of one
candidate location

Our prepack implementation allows for ingesting a
Microsoft Excel file and adding bags to be prepdcke
Figure 7 shows the display of such a list. Noté iesns in
yellow and red indicate problems with the inputctsas
serial numbers not yet being assigned. Nonethelessan

I Unpack List Viewer

.. | Bar Code
1 005664]
11 - POC10...
1.2 . POC10...
1.3 001535...
001535...
14 - POC22...
POC23...
POC23...
POC23...
POC23...
POC23...
POC23...
POC23...
POC23...
POC23...
1.5 .- POC22...
1.5.1 POC22...
1.5.2 POC23...
1.5.3 POC22...
1.6 .- 001535...
1.7 001535...
2 002323)
2.1 XFEXR...

Notes | /

SL6/3...
S 6L
SIL6/L.
SL&M..
SL&M...
SL6/L...
SL6/1L...
S 6L
S 6/1...
SL&/..

Contain...
Contain...

[=
DD!DDDDDDDDDDDDDDDDDDDDHg

Figure9 Unpack List: before packing

Unpack | Item %
1 . 006641
1.1 . POCI0...
12 i i POCI0...
13 - 001535...
001535...
1.4 - - POC22...
POC23...
POC23...
POC23...
POC23...
POC23...
POC23...
POC23...
POC23...
POC23...
POC22Z...
POC22...
POC23...
POC22...

Final Location
JLP1A2_AZ LOCTBS/N...

.. |SEG33...
... |SEG33...
... |SEG33...
... |SEG33...
o |SEG3S... 001535...
... |SEZ351... 001535...
SEG33.. |1018 [002323]
.. |SEG4S... XFEXR...
XFEXSS...
XFEXP...
0025051

COLIF4_F2 SLAMMD Acc... [...

3 LOCTE |SEG33.. COL103_C2 3.0CTB ALT...

31 Nitrile ... |5EG33... XCPO3...
C Battery |525-41... XCPO3... JLP1AZ_AZ LOCTESMN .. |
XCPO3... N
XCPO3... |-
5 D-CellB...|528-41... XCPO3... COLIF4_F2 SLAMMD Acc... |...

XCPO3...
XCPO3...

JREERENOEO00NO00C0O000O0000000000000R

[0.5CTE ISEG33...

0065521

Figure 10 Unpack List: after packing

LAB104 G1S5ingle Stowa... |...

The real measurement of performance for this sysseim
the reduction of errors on console and the rednciio
errors and workforce for the production of prepasid
unpack lists. Although this application has beehnenfor
only a short period of time, stowage officers hasgorted
significant reductions in on-console errors haviogdo
with suggesting locations to astronauts for stowage
Similarly, the number of people required for prdpand
unpack list generation has been halved, but it id@ar yet
what the actual impact is due to the retiremenhefspace
shuttle. Now that SpaceX is delivering payloadtht®|SS,
we will soon be able to report on performance
improvements under equivalent or increased worldoad

Related Work

With respect to rectangle packing, Huang and Koof/jale

an optimal system in the 2-dimensional space, lyaina
this is with respect to an adjustable container.
Conversations with Eric Huang led us to believe thiaile
these techniques might work for smaller instandhs,
increased branching factor in a 3-d space would tede
addressed.

Miyazawa and Wakabayashi provide an algorithm with
guarantees on worst case performance of a factar6af,
but in practice our approach performs better. Thiskely
due to slack introduced by the forced iterativeelig
applied to layers of boxes and possibly due to the
problematic cases of bad orientations for largéectibns
of homogenous boxes. Future work should compargethe
approaches side by side.

Clement et al provided a prototype system that
addressed spatial constraints with respect tottrage of
items onboard the ISS, but this had to do with mpilag
operations and moving items to ensure pathwayswitbt
the actual task of stowage. Very little was impletee
that optimized the packing of the space.

Acknowledgements

This work was carried out at the Jet Propulsiondratory,
California Institute of Technology under contradgthwthe
National Aeronautics and Space Administration.

We acknowledge the tireless efforts of the ISShate
team at the Johnson Space Center. Their deep kdgevle
and practical advice aided greatly in the delivefythis
system. Specifically we acknowledge the effortdJodula
Stockdale, Casey Johnson, Robert Adams, Kary “Scott
Smith, Larry “Joey” Crawford, Margaret Gibb, and deo
Galpin.

References

Bradley J. Clement, Michael J. latauro, Javier 8ianr Russell
Knight, and Jeremy D. Frank. "Spatial Planning Ifdernational
Space Station Crew Operations." In Proceedings hef 10th
International Symposium on Atrtificial IntelligencBobotics and
Automation in Space (i-SAIRAS-10). Sapporo, JapAogust,
2010.

Eric Huang, Richard E. Korf. "Optimal Rectangle Kag: An
Absolute Placement Approach." J. Artif. Intell. R€3AIR) 46:
47-87 (2013)

Russell Knight. "Technology Infusion via Certifimai-based
Analysis." In Proceedings of the 10th InternatioSgimposium
on Artificial Intelligence, Robotics and Automatian Space (i-
SAIRAS-10). Sapporo, Japan, August, 2010.

F. K. Miyazawa and Y. Wakabayashi, “An algorithnr fihe
three-dimensional packing problem with asymptogcfgrmance
analysis,” Algorithmica, May 1997, volume 18, Issliepp 122-
144,

