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Abstract 
Planning for marine asset deployments is a challenging task.  
Determining the location to where the assets will be deployed 
involves considerations of (1) location, extent, and evolution 
of the science phenomena being studied; (2) deployment lo-
gistics (distances and costs), and (3) ability of the available 
vehicles to acquire the measurements desired by science. 
   This paper describes the use of mission planning tools to 
evaluate science coverage capability for planned deploy-
ments.  In this approach, designed coverage strategies are 
evaluated against ocean model data to see how they would 
perform in a range of locations.  Feedback from these runs is 
then used to refine the coverage strategies to perform more 
robustly in the presence of a wider range of ocean current 
settings. 

Introduction   
Study of the ocean is of paramount importance in under-
standing the Earth’s environment in which we live.  Oceans 
cover the majority of the Earth’s surface and play a domi-
nant role in climate and the Earth’s ecosystems.   
 Space based remote sensing provides great information 
about ocean dynamics. However, remote sensing infor-
mation is generally limited to measuring the ocean surface 
or the upper layer of the ocean.  Ocean models can further 
augment this information.  However, in order to probe the 
immense volume of the ocean most accurately generally re-
quires marine vehicles such as autonomous underwater ve-
hicles (AUVs), Seagliders, profiling buoys, and surface ve-
hicles sampling in-situ.  Deploying and operating these as-
sets is very expensive.  This means there is a very limited 
number of marine vehicles compared to the massive size of 
the ocean. Knowing where the assets should be deployed 
and operated is very difficult.  One strategy is to deploy in-
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situ assets to study specific scientific features such as fronts, 
eddies, upwellings, harmful algal blooms, or other features 
of interest.  A typical strategy would be to deploy marine 
assets to measure transects across the feature of interest at a 
scale that covers the feature, as well as a baseline signal 
around the feature.  However, asset capabilities (e.g. mobil-
ity, endurance) and prevailing ocean currents may render 
these science goals unachievable.  Our project targets auto-
matic generation of mission plans for assets to follow these 
science derived templates. This paper specifically describes 
the use of this planning technology to assess feasibility of 
achieving these science templates to support both:  deploy-
ment design (number of assets, where, which templates to 
follow) and science template design (how to adjust designed 
templates to be feasible in settings where they are not likely 
to succeed in original form). 
 The remainder of this paper is organized as follows.  First, 
we discuss the problem that we are trying to solve and the 
inputs to that problem that we use, including the predictive 
ocean model and the types of assets.  Then we discuss the 
approach that we took to solve the problem and the results 
of that approach.  Finally, we discuss what needs to be done 
next to continue to develop a solution to this problem. 

Problem Definition 
The goal of the path planning software is to develop a plan 
of control directives that when executed by a marine asset in 
an actual ocean current field will cause the marine asset to 
follow a template path relative to an ocean feature of science 
interest, where a template path is a series of edges between 
waypoints.  An example of a template path can be seen in 
figure 4.  In this case, the templates in the figure are going 



from one corner of a 15km x 15km box to the opposite cor-
ner. Nominally this path should take 24 hours to complete.  
Ideally the asset would perfectly follow the line but in reality 
the asset should follow the line as closely as possible and 
achieve the endpoint within 0.5 km. 
 There are really two related problems that have differing 
inputs and outputs but use much of the same search-based 
algorithm.  First, before an actual deployment, it is useful to 
assess a range of deployment locations and science template 
coverage strategies.  Second, during an actual deployment, 
we have an actual set of asset locations and the goal is to 
develop asset directives using a current model that will fol-
low the template directed paths in reality.     

The Template Assessment and Feasibility Problem 
 The focus of this paper is the pre-deployment assessment 
of locations and science templates for feasibility. The inputs 
to this are: (1) a set of template paths, (2) a set of asset mod-
els, (3) a planning ocean current model, (4) a nature ocean 
current model, and (5) a set of evaluation locations. The first 
template waypoint in this path is the start location for the 
asset. The asset model determines how the asset will behave 
when simulating actions in a current model. The planning 
and nature current models specify ocean currents for x, y, z, 
and over the relevant proposed deployment domains. The 
planning and nature models are used to simulate the inaccu-
racies of an ocean model with respect to the actual ocean. 
The planner constructs a set of control actions for the asset 
that when executed in the lower fidelity model i.e., the plan-
ning model, should follow the desired science template.  
These control actions are then evaluated in the higher fidel-
ity model i.e., the nature model, to simulate planning model 
inaccuracies.  This process is repeated over a set of evalua-
tion locations. 
 A few assumptions are made in this problem. First, we 
assume that the discrepancies between the planning and na-
ture ocean models are similar to the inaccuracies present be-
tween a planning model and the actual ocean during a de-
ployment. If this is not the case, then the results are not help-
ful when preparing for an actual operational deployment.  
We also assume a number of things about the asset, namely 
that the asset motion model is accurate.  We also do not 
model hardware issues such communication failures, GPS 
failures, and navigation inaccuracies. 

Operational Deployment 
 A second related problem is an actual deployment usage 
problem.  In this case we are given a set of template paths 
asset models, asset locations, and a single ocean current 
model. The templates and asset models are defined in the 
same manner as before. In our current approach only one 
current model is used and we do not evaluate, predict, or 
model the inaccuracies of the predictive ocean models (see 

future work on ensemble modelling). The output produced 
by the planner will be a series of control actions in the form 
of directed waypoints called command points, which are 
distinct from the waypoints that make up the template path.  
The command points are then used by the assets to navigate. 
 Many of the same assumptions are made in this problem 
as with the previous one.  We assume that the ocean model 
currents reflect the actual ocean currents. When running the 
planner, we still assume that there will be no future hardware 
failures and that the properties for the assets are accurate. 

Ocean Model 
Any cell-based, predictive model with information about 
ocean currents over multiple depths and an extended period 
of time could be used for the path planning. Some widely 
spread ocean models include the Harvard Ocean Prediction 
System (HOPS) (Robinson 1999), the Princeton Ocean 
Model (POM) (Mellor 2004), the Regional Ocean Model-
ling System (ROMS) (Li et al. 2006), and the Hybrid Coor-
dinate Ocean Model (HYCOM) (Chassignet et al. 2007). 
 For our ocean model, we used the Regional Ocean Mod-
elling System (ROMS) (Chao et al. 2009; Li el al. 2006; Far-
rara et al. 2015). The grid spacing used for our experiment 
was approximately 3km x 3km and had 14 depths ranging 
from 0 to 1000m in non-uniform levels.  Data was available 
at 1 hour intervals for a 72-hour period. 
 As stated previously, two different ocean models are used 
to represent the inaccuracies in predictive ocean models.  
The ROMS model with the best representation is used as the 
ocean, this is referred to as the nature model.  The second 
model that is used does 6 days of advanced prediction. This 
is referred to as the planning model.  Fewer days of ad-
vanced predication mean a higher fidelity model and thus 
the planning model is closer to the nature model. The list of 
inputs used for the planning and nature model can be found 
in (Troesch et al. 2016b). 
 When simulating the movement of an asset, the closest 
grid point in the latitude, longitude, and depth dimensions is 
used. Whenever the asset crosses into the next depth dimen-
sion the latitude and longitude information is updated. The 
time used is the previous hour. For example, in the first hour 
of operation the information at time index 0 is used. No in-
terpolation is done in any dimension. 

Assets 
Three different assets are used for this experiment, Seaglid-
ers, AUVs, and Wave Gliders. The Seagliders repeatedly 
profile between the surface and some depth, with a specific 
bearing (Eriksen et al. 2001). It is only during these profiles 
where they have any forward movement. If the ocean floor 
or an obstacle is reached before the profile depth, the asset 



will abort that profile and start to ascend.  When the Sea-
glider is at the surface it is able to update its location using 
GPS and communicate with the shore. This allows the asset 
to receive new commands. The dive profile can be seen in 
figure 1. 

 The AUVs are much more flexible than the Seagliders in 
how they move through the water.  However, for this exper-
iment, they are treated very similar to the Seagliders. They 
repeatedly profile between the surface and some depth, only 
moving forward when profiling. The AUV will also avoid 
the ocean floor by ascending before the profiling depth has 
been reached.  When at the surface, the AUV is able to up-
date its location.  Communication is done through an acous-
tic modem. 
 The final asset is the Wave Glider. The Wave Glider has 
two components, a float and a set of submerged fins, con-
nected by a cable (Manley 2010). As such, the current that 
affects the asset is not at one single depth. For the purposes 
of this experiment, the current that the Wave Glider experi-
ences is two-thirds the current at the surface and one-third 
the current at 10m.  

 Next State Generators 
Next state generators are used to discretize the problem 
space. The generators use the properties of each asset, hori-
zontal and vertical speed and maximum depth, a planning 
model, and different heuristics to generate the next states by 
simulating different actions that the asset can take in the 
planning model. 

Baseline 
This next state generator serves as the baseline for the ex-
periment.  Each time an asset is at the surface, the asset ad-
justs its heading to the direction of the next template way-
point. This is the simplest approach that will allow the asset 

to reach the waypoints along the path. As each state only has 
one neighbor, there is no actual search involved. This ap-
proach simulates commanding the assets with only the tem-
plate waypoints.   
 This approach has the benefit of not needing an ocean 
model for an operational deployment. If there is poor corre-
lation between the ocean model currents and the actual 
ocean currents, then this approach would be superior to oth-
ers. In addition, there is very little in the way of operator 
intervention when deployed. Once the waypoints are given 
to the asset there is no need send any re-commands. The ma-
jor downside is the affect the currents can have on the asset.  
If it is important to precisely follow the template path, then 
this approach may perform poorly in the presence of cross-
currents.  This approach was chosen as the baseline for two 
reasons, the lack of a need for a planning model and the sim-
ilarity to the default behavior of the assets when given the 
list of template points. 

Beam Search 
The beam search next state generator can be seen in algo-
rithm 3.  This algorithm limits the number of possible next 
states to N bearings that are selected over some search angle 
theta.  This search angle is centered on the bearing that 
points to the next template waypoint. For example, with a 
beam size of 5 and a search angle size of 30 degrees centered 
at 0 degrees, the bearings used to determine the next states 
would be -15, -7.5, 0, 7.5, and 15 degrees. The command 
point that is selected for each next state is set at a distance 
from the assets current location equal to the distance that as-
set would travel before the next time that it could be com-
manded, or the distance to the next waypoint on the template 
path, whichever is closer.  Figure 2 shows the next states 

Figure 1: Graph of Seaglider and AUV 
movement with surface activities labelled. 

Algorithm 3: Beam Search Next State 
Note: Uses Planning Model 
function BeamSearchNextState(node, templatePath) 
 curWaypoint ← next waypoint in templatePath 
 bearing ← bearing from node to curWaypoint 
 curBearing  ← bearing – search angle 
 while curBearing < bearing + search angle do 
  if distance to curWaypoint > command time * speed 
then 
   point  ← distance to curWaypoint at curBearing 
  else 
   point  ← command time * speed at curBearing 
  newNode ← simulate movement from current loca-
tion to point 
  newNode.planningPoints add point 
  neighbors ← neighbors + newNode 
  curBearing += search angle / (branching factor – 1) 
 return neighbors 
end function 
 
 



produced by beam search.  The green arc is the valid angle 
that the bearings are chosen from, notice that it is centered 
on the bearing from the asset to the next template waypoint. 
N bearings are selected uniformly over this arc. In the case 
of the figure, N is 3. Note that this is different from a stand-
ard beam search. Normally every possible next state would 
be judged by a heuristic, then the top N would be used (Rus-
sell and Norvig 2009). In this case we calculate a fixed delta 
angle between the bearings as follows 

∆	𝑎𝑛𝑔𝑙𝑒 =
𝑎

(𝑛 − 1)
 

where a is the size of the search angle and n is the beam size. 
This is similar to using the top scoring heuristic with no cur-
rents, as the optimal bearing would be directly toward the 
next template waypoint. 
 The beam search approach has the benefit of using the 
predictive ocean model currents to better predict the trajec-
tory that an asset will take.  When the planning model is ac-
curate then this helps to keep the asset on course and arrive 
at the next template waypoint more quickly and reliably.  
However, when the planning model is not accurate this ap-
proach can actually make the situation worse.   
 The approach was chosen as a way to discretize the pos-
sible command points that the asset could be commanded 
with.  The set of possible bearings is limited to some search 
angle toward the next waypoint as it is very unlikely that the 
optimal direction of travel is going to be significantly differ-
ent from the direction that the waypoint is in. The search 
angle is then discretized into N bearings as a small different 
in the angle is unlikely to have a large effect on the end re-
sult. This discretization greatly simplifies the search process 
by taking it out of the continuous space. 

Algorithms 
For this experiment, a continuous planner is used. A graph-
ical representation of this algorithm is shown in figure 3. 
This algorithm runs a best-first search, using the planning 
model, starting from the assets current location, and with a 
template path that contains the waypoints that have not yet 
been visited. The best-first search algorithm generates a list 
of command points that are then given to continuous plan-
ner. Note that these command points are distinct from those 
that make up the template path. The blue lines in the figure 
represent that path that the best-first search finds and the red 
points are the command points that the are returned to the 

continuous planner. These points are used to simulate the 
movement of the asset with the nature model. The bearing 
of the asset is set so that it is heading toward the next com-
mand point. Every time the asset is able to update its loca-
tion, this bearing is updated. How often the location can be 
updated depends on the asset being used.  
 The asset is simulated for an amount of time equal to the 
time between re-commanding the asset, this also depends on 
the asset being used. If the command point is reached before 
this re-command time, then the next command point in the 
list is used. A command point is considered to be reached if 
the asset passes within a certain threshold distance from it. 
 Each time an asset can be re-commanded the best-first 
search is run again, starting at the updated location of the 
asset. The old command points are discarded and the new 
ones from the best-first search are used until the next re-
command. This process repeats until the goal is reached. In 
this case the goal state is successfully visiting every template 
waypoint in order. This process of repeated planning and 
simulation emulates the actual deployment of these assets. 
The best-first search also stores the best result seen so far.  
This is returned after a fixed number of iterations to prevent 
the search from attempting to exhaust every path when it is 
not possible to reach the goal state before the mission length 
has been exceeded, as this is impractical even for small 

Figure 1: Graphic representation of the 
beam search next state generator. The 

search angle is the green arc and the next 
command points are labelled. 

Algorithm 1: Continuous Planner 
Note: Uses Nature Model for simulating movement 
function ContinuousPlanner(startLocation, template-
Path) 

curPath ← startLocation 
curWaypoint ← second waypoint on templatePath 
while true do 
 endNode ← last node in curPath 

planPoints ← BestFirstSearch(endNode, template-
Path) 

point ← first point in planPoints 
while time till re-command > 0 do 
 newNode ← simulate movement to planPoint 

curPath  ← curPath + newNode 
if newNode distance to point <= threshold then 
 point ← next point in planPoints 

 if newNode distance to curWaypoint <= threshold 
then 

  if curWaypoint is final waypoint in template-
Path then 

   return success 
  curWaypoint ← next waypoint on template 

path 
if curPath duration > mission length then 
 return failure  

end function 
 



branching factors. Increasing this threshold will improve the 
results at the cost of extended runtime. 

Best-First Search 

 The objective function that was used for best-first search 
combines distance travelled and time taken.  The equation is 
 

𝑤. ∗
𝑑1
𝑑2
+ 𝑤2 ∗ 	

𝑡1
𝑡2

 

where wd and wt are weighting factors for the distance and 
time portions of the equation respectively, dp is distance 
travelled thus far by the asset, dt is the total distance of the 
template path, tp is the total time taken by the asset so far, 
and tt is the target time to complete the template path.  The 
larger the ratio of wd to wt the more the algorithm will favor 
shorter distance paths over shorter time paths.  By reducing 
the distance travelled the resulting path will stay closer to 
the template path even though the average distance from the 
template path is not included in the calculation. 
 The objective function takes into account the two metrics 
that we are using to evaluate the quality of the paths, time 

and distance.  As these two metrics have completely sepa-
rate units the ratio of distance travelled to expected total dis-
tance and the ratio of current time to target time are used 
instead.  This allows them to be equated more easily.  
 The heuristic function used by the best-first search is the 
following equation 

𝑤2 ∗
𝑑5
𝑠7
∗
1
𝑡2
+ 		𝑤. ∗

𝑑5
𝑑2

 

where wd and wt are weighting factors for the distance and 
time portions of the equation respectively, sa is the horizon-
tal speed of the asset, dl is distance left to travel, tt is the 
target time to complete to template path, and dt is the total 
distance of the template path.  As the asset is further along 
in the template path this number will decrease.  In practice, 
this heuristic is only a measure of the distance left to travel, 
as the time left has a linear relationship with the distance.  
The two terms are calculated separately so the heuristic is 
weighted appropriately with respect to the objective func-
tion. 
 An approach similar to the one used for the objective 
function is used for the heuristic function.  The ratio of the 
estimated distance left to the total distance of the template 
path and the ratio of the estimated time left to the total target 
time is used. 

Experiment Setup 

Seaglider 
The Seagliders were given a speed of 0.266 m/s, a glide 
slope of 20 degrees, and a maximum depth of 500 meters. 
They were commanded every 3 hours.  This is equivalent to 
one complete profile. At each surface from a profile the Sea-
glider location is updated. This allows the asset to adjust its 
bearing to point toward the next command point it is travel-
ling to.  The template path was from one corner of a 15km x 
15km box to the opposite corner. This was done for the two 
diagonal pairs in each direction, for a total of 4 runs per lo-
cation. Each run has a target completion time of 24 hours. 
The template waypoints have a threshold distance of 0.5 km. 
This is the distance that the Seaglider can be from the way-
point while still be considered to have visited it. During a 
deployment there would be two Seagliders operating con-
currently, one for each diagonal. This pattern can been see 
in figure 4. 

Figure 2: Graphic representation of the continuous 
planning process. 

Algorithm 2: Best-First Search 
Note: Uses Planning Model 
function BestFirstSearch(startNode, templatePath) 

Q ← startNode 
best ← startNode 
while Q not empty do 
 curNode ← lowest score node in Q 
 if best score < curNode score then 
  best ← curNode 
 if curNode is a goal state then 
  return curNode.planningPoints 
 if node expansion limit reached then 
  return best.planningPoints 
 neighbors ← next-state-generator(curNode, template-
Path) 
 for each neighbor in neighbors do 
  Q ← neighbor 

end function 
 



AUV 
The AUVs were given a speed of 2.0 m/s, a glide slope of 
25 degrees, and a maximum dive depth of 100 meters. They 
were commanded every hour. The AUVs also update their 
location whenever they surface. The template path is a 
“bowtie” pattern on a 3km by 3km box. The target comple-
tion time for a single bowtie is 1 hour. The template way-
points had a threshold of 0.1 km. This distance is smaller 
than that used for the Seagliders because of the shallower 
dive depth, which allows the AUVs to change bearings more 
often and be more precise.  Similar to the Seagliders, during 
a deployment there would be 2 assets operating concur-
rently. They would be travelling in opposite directions on 
the path. This pattern can been see in figure 5. 

Wave Glider 
The Wave Gliders were given a speed of 2.0 m/s. As they 
only operate on the surface they do not have a glide slope or 
a maximum depth. They are also commanded every hour.  
The Wave Gliders updated their location every 10 minutes.  
The template path is the same bowtie pattern that is used for 
the AUVs, with the same target completion time.  A way-
point threshold of 0.1 is also used for the Wave Gliders. 

Test Locations 
 
The testing was done in the model of Monterey Bay. Each 
test was executed at 100 different locations. The locations 
represent the center of the box that defines the template 

paths specific to each asset. Note that some of the locations 
are very close to shore or even located on land. These loca-
tions are discarded in testing as it is not possible to complete 
the template path starting from them.  The locations can be 
seen in figure 6. 

Results in Simulation 

Seaglider 
Figure 7 shows the feasibility analysis for the Seagliders 
when using the baseline. For each location there are 4 icons, 
1 for each run. White diamond shaped icons represent loca-
tions that are invalid because they are too close to land or 
the Seaglider could not navigate the sea floor. The green 
icons represent the runs where the template path is possible 
to complete in a 36-hour window. The red icons with the dot 
show the runs where the path was not possible in the 36-
hour window. Forty-seven locations for the Seaglider con-
tain invalid runs. These runs are not included in any calcu-
lations. 

 For each next state generator, the number of successful  
runs, the average time to complete the runs, and the average 
distance from the template path weighted by time are used 
as metrics. Only the successful runs were considered when 
calculating the distance and time metrics.  The results for the 
Seagliders tests can be seen in figure 10 and figure 11. In the 
time and distance metrics a 95% confidence interval is 
shown. Using the beam search approach reduced the aver-
age distance from the template path, but increased the aver-
age time taken. As a result, a lower percentage of the runs 
finished successfully in the 36-hour window. 
 A scatter plot comparing the results of the baseline and 
beam search can be seen in figure 12. Each data point repre-
sents a single run of the planner. We selected the best per-
forming parameters for the beam search, a search angle of 

Figure 3: Template paths for 
the Seaglider experiments. 

Figure 4: Template paths for 
the AUV and Wave Glider 

experiments. 

Figure 5: The 100 test lo-
cations for each of the 

experiments in the Mon-
terey Bay model. The lat-
itude and longitude la-

bels represent the bound-
aries. 

Figure 6: Seaglider feasibility analysis using the baseline. The 
result of 4 runs at each location are shown.  White diamonds 

are invalid, green markers are successful, and red markers with 
a dot are failures. 



20 degrees and a beam size of 7.  In order to better under-
stand the results, we filter the data in two different ways, 
when the currents are too strong for the Seaglider to com-
plete the path in a reasonable amount of time and when the 
planning model is extremely inaccurate. In order to filter the 
case where the currents are too strong, we employed beam 
search using a planning model that is identical to the nature 
model, as this is the best performing search.  If this was un-
able to complete the template path in 36 hours, then we re-
moved the data point due to current strength.  In order to 
filter out the cases where the planning model is inaccurate, 
we used the root-mean-square error of the currents along the 
template path.  If the error is greater than 0.10 then we re-
move the data point due to error in the planning model.  This 
number was selected by taking the average error of the cases 
in which beam search performed worse than the baseline in 
both the time and distance metrics. The averages of the data 
are also marked on the plot. From this scatter plot we can 
see that the beam search improves the distance to the tem-
plate path, similar to what we saw in figure 10.  The time to 
complete the template path does not change much between 
the baseline and the  beam search next state generators. 
 Two paths are shown in figure 8 and figure 9.  Figure 8 is 
an example of a failed path using the the baseline next state 
generator.  The strong currents pushed the Seaglider signif-
icantly off course, preventing it from reaching its goal in 
time.  Figure 9 shows an example from the beam search next 
state generator.  The green line is the template path, the yel-
low line with yellow icons containing circles is the results 
from using the beam search next state generator, and the red 
path is from using the baseline next state generator. By hav-
ing some information on the currents, the beam search next 
state generator is able to counteract them to stay closer to 
the template path. 

AUV 
Figure 13 shows the feasibility analysis for the AUVs. The 
icons represent the same outcomes as with the Seaglider, 
however there is only 1 icon per location. Eighteen locations 
are invalid when using the template path for the AUVs. In 

all other locations, the AUVs are successful in completing 
the bowtie paths within 36 hours. This was expected because 
of the short template path lengths and high speed of the 
AUVs compared to the currents. 
 The same metrics that were used with the Seaglider tests 
were used with the AUV tests.  The results of the test can be 

Figure 9: Seaglider distance results for the baseline and beam 
search next state generators with various search angles and beam 

sizes. 

Figure 10: Seaglider time results for the baseline and beam 
search next state generators with various search angles and beam 

sizes. 

Figure 11: Seaglider baseline vs. beam search with a search 
angle of 20 and beam size of 7, comparing the distance and 

time metrics. 
Figure 7: Seaglider example of a 
failed path when using the base-

line. 

Figure 8: Seaglider example 
where beam search performs 

better than the baseline. 



seen in figure 14 and figure 15.  Using the beam search ap-
proach did not result in an improved path over the baseline.  
The quality of the paths actually decreased.  The currents do 
not have as large of an affect on the AUVs because of the 
relatively large speed compared to the current speed, reduc-
ing the gain from using the planning model. 

Wave Glider 
The feasibility analysis for the Wave Glider is similar to that 
of the AUVs as they have the same template path.  There are 
a few additional invalid locations because the Wave Gliders 
have a float and a submerged component.  This means that 
they need slightly deeper waters to operate.   There are 20 
invalid locations.  As with the AUVs, the feasibility analysis 
is the same for both next state generators. 

 The results for the Wave Glider test were very similar to 
that of the AUV. They can be seen in figure 16 and figure 
17. The beam search next state generator did not improve 
the paths in either the average distance from the template or 
the average time to complete the path.  The Wave Gliders 
are slightly slower than the AUVs, but not enough as to 
where to currents drastically affect them. 

Related Work 
A significant amount of work has been done in regards to 
path planning for underwater vehicles.  However, there has 
been little work done on planning over short distances and 
following a given path. (Rao and Williams 2009) does plan-
ning for gliders over long distance, minimizing the energy 
used to reach some location, while we are planning over rel-
atively short distances following some template path. 
(Thompson et al. 2010) uses the ROMS model to do path 
planning, but minimizes the time taken from the start loca-
tion to the goal location. (Pereira et al. 2013) prevents glid-
ers from surfacing in dangerous areas, such as shipping 
lanes, while travelling to a goal location, while we focus on 

Figure 12: AUV feasibil-
ity analysis.  White is an 

invalid location and 
green is a location where 
every run was successful. 

Figure 13: AUV distance results for the baseline and beam 
search next state generators with various search angles and 

beam sizes. 

Figure 14: AUV time results for the baseline and beam search 
next state generators with various search angles and beam sizes. 

Figure 15: Wave Glider distance results for the baseline and 
beam search next state generators with various search angles 

and beam sizes. 

Figure 16:Wave Glider time result for the baseline and beam search 
next state generators with various search angles and beam sizes. 



following a specific path. (Cashmore et al. 2014) uses AUVs 
to inspect features at a site efficiently.  No ocean model sim-
ilar to ROMS was used. (Alvarez, Garau, and Caiti 2007) 
also does not use an ocean model, but instead uses synthetic 
data with general algorithms to control a set of floats and 
gliders.  (Dahl et al. 2011) and (Troesch et al. 2016a, 
Troesch et al. 2016b) address the control of vertically pro-
filing floats using a current model but do not address other 
types of marine vehicles. 
 Continuous planning has become more prevalent in re-
cent years and the evolution of this planning technique, with 
respect to multiple assets, is clearly described in (Durfee et 
al. 1999). (Myers 1999) describes a Continuous Planning 
and Execution Framework (CPEF), which integrates plan-
ning and execution through plan generation, monitoring, ex-
ecution, and repair. Using an iterative repair process, as well 
as user interaction, CPEF is able to plan in unpredictable and 
dynamic environments, which is shown through tests in a 
simulation of an air-campaign for dominance. (Chien et al. 
2000) presents Continuous Activity Scheduling Planning 
Execution and Replanning (CASPER), which also uses iter-
ative repair as part of continuous planning, specifically for 
autonomous spacecraft control.  

Future Work 
There are a number of different possible extensions to this 
experiment. Different next state generators and heuristics 
could be developed that focus on the assets that did not ben-
efit from the approach in this work. More research into the 
performance characteristics of beam search and the associ-
ated heuristics could be done. The beam search next state 
generator could be improved to select the next states more 
intelligently. Tests could be performed in different areas, 
such as those with stronger currents and different template 
paths could be used to better understand the behavior of the 
planner.  The drop off location of the asset could be included 
in the planning. Ocean models with different fidelity could 
be used to understand the performance of the planner with 
more or less accurate models.  A range of methods for inter-
polating the current model information between data points 
could be explored. Additionally, ROMS provides ensemble 
information from multiple runs with varying conditions, the 
planner could use search in the ensemble space and/or use 
ensembles to predict execution uncertainty and incorporate 
this to inform the generation process.  Multi-agent planning 
could be used for multiple assets to achieve a goal. The us-
age of the model could be improved to include interpolation 
between the grid points. 

Conclusion 
This experiment has shown the benefits of using a predictive 
ocean model to do planning in order for an underwater ve-
hicle to follow a template path.  With the Seaglider, the 
beam search next state generator improved how well the as-
set could follow the template path compared to the baseline.  
However, with this result came a slight increase on the time 
taken to complete the template path. 
 However, this benefit does not extend to every type of as-
set. The baseline performed better than beam search when 
using Wave Gliders and AUVs in both how well the tem-
plate path was followed and the time to complete the path. 
It is clear that the amount of benefit from this approach de-
pends heavily on the vehicle and path in question. As such, 
a single approach may not be applicable to a wide variety of 
assets. 
 More research needs to be done in order to fully under-
stand the behavior of the beam search next state generator 
and the associated objective and heuristic functions. 
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